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A BPP model for nuclear spin relaxation in disordered metal–hydrogen
systems
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Abstract

Nuclear spin relaxation rates measured for disordered metal–hydrogen systems are often interpreted using a BPP model with a
distribution of activation energies. This model is analysed more rigorously, taking into account the Fermi–Dirac distribution for the
probability of occupation of sites by hydrogen, and site- and barrier-energy models for the hydrogen jumps. The results show appreciable
differences to the use of the simple BPP activation energy distribution model.  1999 Elsevier Science S.A. All rights reserved.
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1. Introduction asymptotic region. Attempts have been made (see, for
example, Refs. [1,5–7]) to interpret such data in terms of a

Measurements of nuclear spin relaxation rates can BPP model modified to include a distribution N(E) of
provide very useful information about diffusion of H in activation energies due to the structural disorder. The
metal–hydrogen systems [1]. For simple ordered systems, general form of the relaxation rate is assumed to be
the H or metal nuclear spin-lattice relaxation rates R (in
either the laboratory or rotating frames) often have a R 5E N(E)R (E) dE (1)BPP

characteristic form as a function of temperature T at fixed
where R (E) is the relaxation rate for the ordered BPPfrequency v : plots of log R vs. 1 /T exhibit a maximum BPP

model for diffusion with a jump frequency G with anand have linear and symmetric asymptotic forms in the
activation energy E.low- and high-temperature limits. This behaviour can be

The aim of this paper is to investigate the generalisationunderstood on quite general grounds [2] in terms of H
of the BPP model to disordered systems more thoroughly.diffusion between interstitial sites, with the mean diffusion
Of particular interest is the application of the model as ajump rate G characterised by an Arrhenius form G 5

function of H concentration following some quite detailedG exp(2E b ), where E is an activation energy and b 50 a a
1measurements by McDowell and Cotts [6] of H spin-1 /(kT ). Detailed calculations of the relaxation rates can be

lattice relaxation in Ni Zr H . The following generali-made for this diffusion model [3], but a very simple model 0.33 0.67 x

sation of the BPP model considers the occupation prob-due to Bloembergen et al. [4] gives the correct qualitative
abilities of the interstitial sites as functions of temperaturebehaviour and can provide approximate values of the
and concentration, together with some site-energy anddiffusion parameters. This BPP model has been widely
barrier-energy distribution models for the H diffusion. It isused in interpreting experimental relaxation data in many
shown that the results can be quite different to those fromsystems because of its simplicity and ease of use.
Eq. (1).The forms of the relaxation rates as functions of

temperature, frequency and H concentration are often quite
different in disordered systems [1]. In ordered systems the
asymptotic slopes of the log R vs. 1 /T plots are of equal 2. Theory
magnitude and opposite sign, whereas in disordered sys-
tems the low temperature side of the peak decreases more The essence of the BPP model in ordered systems is that
slowly with increasing 1/T and may not reach a linear the probability of no jump of an atom in a time t is

exp[2Z(1 2 c)G t], where G is the mean frequency of0 0

*Corresponding author. attempted jumps of an atom to a particular one of the Z
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available nearest neighbour sites. The factor of (1 2 c) G(t)
takes account of the probability of the jump not being Z 2S 2(12c)G (E,E )t1successful because the target site is occupied with prob- ]5 E p(E)N (E) dE E N (E ) e dEH F G Js b 1 1c
ability c, where c is the fraction of interstitial sites

(6)occupied. The BPP model effectively assumes that the
correlation between a pair of spins is destroyed when a

where N (E ) is the normalized distribution of barrierb 1jump occurs. The spherically averaged correlation function
energies. The summation S is taken over the averageG(t) for magnetic dipolar interactions may then be written
positions of neighbours of a site, ignoring correlationsas [3]
between these positions and jump rates G(E,E ). In the1

22Z(12c)G t above expression the term p(E)N (E) is the weighting ofG(t) 5 cS e (2) s

occupation of each of a pair of sites of interacting spins,
where the factor of two in the exponent occurs because the integral with respect to barrier energies E is the1
either spin may jump, and the factor S is the lattice probability of no jump of a spin to a particular neighbour

26summation S 5 o r , where the summation is over the in a time t, and this integral is raised to the power Za a

interstitial site separations r . The corresponding spectral because of the Z possible directions for the jump. Thea

density function J(v) is the Fourier transform value of Z is assumed to be the same at all sites. The
` integral over site energies is squared because either spin of

the pair may jump. The factor of 1 /c multiplying theJ(v) 5 2 E G(t) cos(vt) dt (3)
expression occurs because p(E)N (E) is normalised to cs0
from Eq. (5), and the probability of occupation of one of

and the spin-lattice relaxation rates R (laboratory frame) the pair of sites must be normalised to unity. The ordered1

and R (rotating frame) are linear combinations of the case described by Eq. (2) can be recovered by taking d1r

spectral density functions [3]. function distributions. When a pair of spins are nearest
The form of the correlation function in Eq. (2) involves neighbours the number of possible jump directions should

a choice of origin for the starting position of one of a pair be reduced from Z but this effect is ignored in the BPP
of interacting spins and a summation over the possible model.
positions of the other spin with a weighting of c for the Particular models that are often considered for diffusion
probability of occupation of the sites. The jump probability in disordered systems are a site-energy model, in which all
is the same for all sites and in all possible directions. This the barrier heights are assumed constant, and a barrier-
analysis needs modification for disordered systems. energy model in which all the site energies are assumed

In a disordered system with a normalised distribution constant. For the site-energy model the correlation function
N (E) of site energies, the probability p(E) of occupation iss

of a site with energy E is given by the Fermi–Dirac
2S 2Z(12c)G (E,E )tdistribution (see, for example, Ref. [8]) 1]G (t) 5 E p(E)N (E) e dE (7)H Js sc

1
]]]]p(E) 5 (4)(E2m )b where E are the constant barrier energies. For the barrier-1e 1 1

energy model
where m is the chemical potential. The chemical potential

2Z
2(12c)G (E,E )tm is related to the fraction c of interstitial sites occupied 1G (t) 5 cS E N (E ) e dE . (8)H Jb b 1 1by

` where E are the constant site energies.
c 5E p(E)N (E) dE. (5) It is of interest to note the dependences of the models ons

2` the concentration c. In the ordered case and the barrier-
energy models, the parameter c occurs as an overall

The atom jump rate from a site with energy E to a
scaling factor and as a scaling of time with (1 2 c). For the

neighbouring site will depend on the barrier energy E1 models including a site-energy distribution there is an
between the sites and whether or not the target site is

additional c dependence through the Fermi–Dirac dis-
vacant. Assuming that the occupation of each site is

tribution.
independent of the occupation of its neighbours, the
probability of no jump of an atom to a particular neighbour
in a time t is exp[2(1 2 c)G(E,E )t], where G(E,E ) 51 1

G exp[2(E 2 E)b]. The parameter G is assumed in- 3. Results0 1 0

dependent of the site and the occupation of its neighbours.
The correlation function for disordered systems, analo- The expressions for the spin-lattice relaxation rates R1

gous to Eq. (2) for ordered systems, is then (laboratory frame) and R (rotating frame) are [3]1r
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4 2Fig. 1. Relaxation rates R (curves with lower maxima) and R (curves with upper maxima), in units of v / [g h« I(I 1 1)Sc], as a function of v /G , for1 1r 0 0 a] ]
the BPP model of Eq. (1) and the site-energy model, with c 5 0.5, s /(E 2E) 5 0.12 and v /v 5 0.001.1 1 0

numerically for models with a normalised Gaussian dis-1 4 2]R 5 g h« I(I 1 1)[J(v ) 1 4J(2v )] (9) tribution of energies1 0 05

]1 22(E2E )1 ]]4 2 N(E) 5 e (11)]]R 5 g h« I(I 1 1)[3J(2v ) 1 5J(v ) 1 2J(2v )] (10) Œ1r 1 0 0 2ps10

]
where g and I are the nuclear gyromagnetic ratio and spin with mean E and standard deviation s. The value of the
quantum number, respectively, of the diffusing species, number of nearest neighbours Z is assumed to be four,
v 5 gB and v 5 gB , where B and B are the static and corresponding to tetrahedral interstitial sites.0 0 1 1 0 1

rotating magnetic fields, respectively. Some results are presented in Figs. 1 and 2 for the
4 2Calculations of the relaxation rates have been performed relaxation rates, in units of v / [g h« I(I 1 1)Sc], as a0

Fig. 2. As for Fig. 1 for the barrier-energy model.
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] ]
function of v /G , where G 5 Z(1 2 c)G exp[2(E 2E)b] ordered system is at v /G 5 v /v 5 1000, independent of0 a a 0 1 0 a 0 1

is the average jump rate of a spin from a site with energy c and v /G .0 0

barriers corresponding to the means of the energy dis-
tributions. The figures correspond to scaled plots of
experimental relaxation rates as a function of reciprocal
temperature. For a BPP model of an ordered system such a 4. Discussion and conclusion
plot would give a universal curve independent of con-
centration c and frequency v , for a given ratio v /v in A comparison between the relaxation rates calculated0 1 0

the case of R . For disordered systems the additional from the present theory with those from the BPP theory in1r

parameters required are c and v /G [9], as well as Figs. 1 and 2 for c 5 0.5 shows that, while the curves are0 0

parameters describing the energy distributions. all qualitatively similar in form, there are substantial
The results in Fig. 1 are for a site-energy distribution differences in detail. For the site-energy model in Fig. 1

model corresponding to Eq. (7) and those on Fig. 2 for a the BPP model shows much more broadening in the curves
barrier-energy model corresponding to Eq. (8). In both and asymmetry between the asymptotic forms on either

] ]
cases s /(E 2E) 5 0.12, v /v 5 0.001 and c 5 0.5. Re- side of the peaks. For the barrier-energy model in Fig. 21 1 0

24 28sults are shown for v /G 5 10 and 10 . In the case of the BPP model shows similar broadening to the results for0 0

the site-energy model the chemical potential m was first the barrier-energy model, but the values of the maxima and
calculated for each c and T (corresponding to a particular their positions are quite different. Results for other values
value of v /G ), and this value then used in Eq. (7). The of spin concentration c show similar behaviour. The BPP0 a

BPP results from Eq. (1) are also shown and these are the values of the maximum relaxation rates, and their posi-
same in both figures because this model does not dis- tions, as functions of c, show similar behaviour to the
tinguish between site- and barrier-energy models. site-energy model as shown in Fig. 3, but again the

Features of relaxation rate data that are often of interest magnitudes of the values are quite different. For the
are the magnitudes of the maximum relaxation rates and barrier-energy model in Fig. 4 there are significant differ-
the temperatures at which these maxima occur. Some ences between the BPP and barrier-energy maxima as
results for these parameters for the rotating frame relaxa- functions of c in the form of the curves as well as the
tion R are shown in Figs. 3 and 4. The BPP model for an magnitudes. The maxima in the relaxation rates for all of1r

ordered system gives the maximum of the relaxation rate the models are less than the corresponding values for the
in the rotating frame as 0.15v /v in the units used in BPP results in an ordered system. For the ordered system0 1

Figs. 1 and 2, so that the corresponding line in Figs. 3 and the position of the maximum is when v /G is a constant.0 0

4 would be 150c. The position of this maximum for the This is not the case for disordered systems, as can be seen

] ]4 2Fig. 3. Values of the maximum relaxation rate R , in units of v / [g h« I(I 1 1)S], and the value of b 5 (E 2E) /(kT ) at which the maximum occurs, as1r 0 1

functions of spin concentration c, for the BPP model (broken lines) and the site-energy model (solid lines). The curves commencing at the origin are the
maximum relaxation rates (left-hand scale) and the other curves are the values of b (right-hand scale). The values of v /G for each curve are shown onmax 0 0

the figure.
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Fig. 4. As for Fig. 3 for the barrier-energy model.

in the figures, and the position of the maximum depends on concentration-independent parameters. Their results
the values of v /G and c. showed a much greater relative change in the position of0 0

Similar conclusions follow for results calculated for the peak with concentration than is the case for any of the
other values of the standard deviation s. As the value of s curves in Figs. 3 and 4, and the values of their maximum
is decreased the relaxation rates for all the models tend relaxation rates showed structure between c 5 0.25 and 5
towards the form for the BPP model for an ordered system that is not present in the present results. This suggests that
as expected. The differences between the BPP and present these features are a consequence of parameters such as the
models, therefore, increase with increasing disorder. There the details of the site- or barrier-energy distributions being
would, therefore, appear to be serious discrepancies in the concentration dependent.
simple BPP model of Eq. (1) for disordered systems. The modifications to the BPP theory described here

The present model based on Eqs. (7) and (8) has a provide a relatively straightforward method and a more
sounder physical basis than Eq. (1) but it still involves rigorous approach than Eq. (1) for analysing relaxation
approximations. In particular, it assumes that the correla- data in disordered systems. There is the possibility of
tion between a pair of diffusing spins is destroyed as soon distinguishing between site- and barrier-energy disorder
as one of the spins jumps. The importance of the return and of examining the consequences of combinations of
jumps and the contributions to the relaxation from diffu- these on the relaxation rates. The more general model of
sion to other sites needs further investigation. It is, Eq. (6) could be used with a set of parameters for both
however, of interest to note that the result in Figs. 1 and 2, types of disorder together to obtain the best fit to data. A
that a distribution of barrier energies is more effective in practical difficulty with this generalisation is the number of
producing broadening of the relaxation peaks than a parameters involved and also the computational effort
distribution of site energies, is consistent with an analysis needed in this general case. The use of Eq. (6) involves the
of finite disordered systems for low spin concentrations computation of a triple integral to obtain the spectral
[9], although some Monte Carlo calculations have shown density functions, compared with only double integrals for
the reverse behaviour [10] and the behaviour may depend the site- or barrier-energy models separately. Even in these
on the spin concentration. A detailed comparison of the simpler cases the computational time can be significant for
results from the present models with calculations by other higher frequencies, although this difficulty can be over-
methods is highly desirable to clarify the effect of the come in practice by neglecting the J(v ) and 2J(2v )0 0

approximations in deriving Eqs. (6)–(8). terms in Eq. (10) in regions away from the rotating-frame
The concentration dependence of the maximum relaxa- relaxation peak where they are small.

tion rates and their positions shown in Figs. 3 and 4 can be Frequency-dependent measurements of relaxation rates
compared with the concentration-dependent measurements in disordered systems are especially valuable. As shown in

1of McDowell and Cotts [6] for H rotating frame relaxa- Figs. 1–4, measurements at different frequencies provide
tion in Ni Zr H . The present modifications of the additional information, unlike the case for ordered systems.0.33 0.67 x

BPP model cannot explain their data with a single set of The rotating-frame relaxation is especially important in
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